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Abstract

Short-Term Load Forecasting (STLF) is the task of predicting consumers’ electricity demand
within the next 24 to 48 hours. This task has historically depended primarily on forecasting
consumer behaviour. However, with increasing climate and energy-independence concerns,
and the rapid growth of rooftop solar panel installation packages, programs, and incentives,
the forecasting task now also depends on the productivity of solar and other behind-the-meter
generation systems. This issue is examined in the context of two states in Australia: New
South Wales, where behind-the-meter generation is a lesser factor in prediction, and South
Australia, where behind-the-meter generation has a significant impact on net demand. The re-
gional difference in generation patterns is found to be reflected in forecasting accuracy, with
new meteorological inputs like irradiation improving performance significantly. Generalised
Additive Mixed Model, Random Forest, and Histogram Gradient Boosting methods are ap-
plied, and the latter ensemble methods are found to predict most accurately. Exogenous social
information and methodological choices, e.g. holiday encodings and training data windowing
strategies, are found to have some impact on performance as well. Our proposed architecture,
Histogram Gradient Boosting models trained on annual data windows with a binary-encoded
holiday covariate, is found to achieve 65 MAE, 6% MAPE, and 84 RMSE.
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Chapter 1

Introduction

Short-Term Load Forecasting (STLF) is the task of predicting net demand of businesses and

consumers on their electricity grid within the next 24 to 48 hours. Grid operators and electricity

providers find these forecasts indispensable for providing sufficient power to their customers,

while avoiding the waste of overproduction. The financial stakes of overproduction are high,

as energy prices fluctuate with the market and geopolitical events. Underproduction, on the

other hand, can lead to a brown-out: a drop in voltage in the system which causes demand-

ing systems and appliances to malfunction. Underproduction can also lead grid operators to

implement rolling blackouts, where full service is only supplied to limited areas on a rolling

basis. Thanks to accurate demand forecasts, and the reserved buffers of supply they inform,

these underproduction outcomes are rare in nations like Australia.

There are myriad actors in the electricity market that can benefit from accurate forecasts.

Electricity retailers, traders and asset managers with stakes in the energy market, and even

consumers themselves can make use of predicted demand to serve their interests.

STLF has been well researched in the context of unidirectional demand, where consumers

demand, and producers meet that demand. Work in unidirectional contexts benefits from a

unitary focus on consumer activity analysis, with aggregate patterns of activity across the grid

providing sufficient information. Of course, as electricity must be produced and consumed

effectively simultaneously, aggregation of individual behaviour across the service area serves to
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smooth out the observed demand. Much successful research has been conducted into modelling

this smoothed demand as a single univariate time series, propagating past demand patterns

into the near future. While this framing of the problem has a strong theoretical foundation,

the non-linearity of demand can require complex models to forecast accurately. Alternative

techniques model aggregate demand behaviours in a multivariate fashion, with a set of variables

which extract the useful social information from a raw point in time. For example, year-over-

year trend, weekday/workday patterns, and typical daily demand profiles can be attributed

directly to their appropriate component of time with these techniques. This also facilitates

inclusion of external variables which can be highly predictive of specific classes of demand,

like temperature and its relationship with heating and cooling appliances.

With the introduction of renewable energy technologies, and many economic and political

incentives to utilise these technologies, consumers are now able to cost-effectively generate

their own power via rooftop photovoltaic (PV) solar panel installations. These and other local

electricity generation technologies introduce new complexity to the forecasting task. Behind-

the-meter (BTM) generation of electricity cannot be measured by electricity providers, as it

occurs within the consumers’ domain of electricity management. This obfuscates the true de-

mand, making necessary a new class of net load forecasting models which account for variables

beyond consumer behaviour. Weather phenomena like solar irradiation, wind speed and direc-

tion, and cloud cover could play major roles in the scale of BTM generation, and therefore net

demand of consumers. To complicate matters further, demand patterns may also be affected,

as consumers intentionally shift their demand toward peak BTM generation times to optimise

their own net cost of electricity.

In South Australia (SA), rooftop solar systems are a significant source of BTM generation,

with systems installed on about 40% of homes in the region [1]. In rare cases, which will be

discussed in a later chapter, this has even lead to BTM generation beyond the total demand of

the region, i.e. negative net load. It is no surprise that modelling net demand in systems like

this is more difficult, requiring more data from myriad sources, and advanced methodologies

to match.

In New South Wales (NSW), there are 2-3 times more rooftop solar installations than in
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SA. While this is quite a significant shift from years past, proportionally it has had a lesser

impact on state-wide grid activity, because these installations serve a population about 4-5

times greater [2]. Further complicating comparison, the New South Wales grid comprises both

the State of New South Wales and the Australian Capital Territory. It is assumed that many

other differences between these regions affect their demand patterns as well, but fall beyond

the scope of this work.
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Chapter 2

Literature Review

2.1 Foreign Markets

A meta-analysis of recent research into the STLF task has shown a broad range of applied

methods [3]. The various methods fall into three categories: artificial intelligence (AI), sta-

tistical methods, and hybrid models. While Artificial Neural Networks (ANN) are the most

commonly applied method, hybrid approaches are becoming increasingly popular as a means

of extracting the advantages of each component method. With some of these methods, pre-

diction errors can be lower than traditional time-series methods, in terms of metrics like Mean

Absolute Percentage Error (MAPE). The meta-analysis found that this was the most commonly

reported metric, likely due to its higher comparability across grids with significant differences

in demand patterns and minimum/base load. Other metrics reported include Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Average

Percentage Error (APE). The most common load prediction frequency in the literature is hourly,

with prediction windows ranging from one day to one week, though many researchers did not

report this particular detail. Most research is conducted using private data for markets in Asia,

Europe, North America, and Australia, with other areas not receiving significant focus.

Xie et al. [4] apply a Long Short Term Memory Neural Network (LSTM) followed by a

Multilayer Perceptron (MLP) as a two-stage forecasting method for data from Kanto, Japan.
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They show that this two-stage method is useful for separating the time-series forecasting task

from any residual differences due to external variables like weather. They find that the combi-

nation of methods reduces prediction error by nearly a third, compared to isolated LSTM and

MLP models.

Beichter et al. [5] use simulated demand data to explore forecast performance under dif-

ferent levels of supply and demand aggregation. They find that a partially aggregated strategy

which forecasts supply and demand separately resulted in superior forecast accuracy, compared

to a single aggregated net demand forecast or combination of many dis-aggregated generator-

level forecasts.

Browell and Fasiolo [6] propose a Generalised Additive Model (GAM) model with quantile

regression and conditional parametric tails. They claim this methodology is more suited to the

business decision of reserve allocation. Maintaining a suitable generation buffer or reserve

level is necessary to prevent black- or brown-out conditions on an electric grid, thus modelling

the probability of reserve exceedance is taken to be the key task. They find that this model

better captures the trade-off between the cost of additional reserve and risk of exceedance,

compared to other benchmark models. While this is surely true from a business perspective,

it is also valuable and more common to focus on the 50% Probability of Exceedence (POE)

estimate, also known as the most probable forecast. The researchers additionally find that a grid

of numerical weather prediction (NWP) statistics does not add significant value to prediction

of their data from Great Britain, but concede that other feature extraction methods could make

gridded NWP more valuable.

2.2 Australian Energy Market

The Australian Energy Market Operator (AEMO) conduct in-house the operational forecasts

necessary to manage their grids, one of those grids being the National Energy Market (NEM)

[7]. This market covers the majority of the country, including New South Wales, the Australian

Capital Territory, Queensland, South Australia, Victoria and Tasmania. Other states are cov-

ered by smaller grids, like the Wholesale Electricity Market in Western Australia. To forecast

demand, AEMO separate the drivers of demand into two categories: structural, which includes



2.2. AUSTRALIAN ENERGY MARKET 11

factors like population and economic growth, and random, which includes weather-driven and

other consumer behaviours.

Hyndman and Fan [8] emphasise the importance of probabilistic predictions in the context

of long-term forecasting of demand in South Australia. The authors propose semi-parametric

additive modelling of demand from driver variables like temperature and calendar effects, fol-

lowed by posterior distribution estimation from simulation, scenarios, and residual bootstrap-

ping.

Following up their previous work, Fan and Hyndman [9] again apply semi-parametric ad-

ditive models to estimate relationships between demand and relevant variables. The model in-

puts include time/calendar-based variables, historical demand data, and temperature forecasts

for specific sites within the target power system. Prediction confidence intervals are estimated

using a modified bootstrap method tailored to the unique seasonality patterns in electricity de-

mand data. The proposed methodology is used to forecast half-hourly electricity demand up

to seven days in advance for the Australian National Electricity Market. Its performance is

assessed through out-of-sample experiments using real-world power system data, and on-site

implementation by the system operator.

The approach taken by McCulloch and Ignatieva [10] provides a basic foundation for our

own analysis. They chose a parsimonious Generalised Additive Mixed Model (GAMM) fit

by weighting temperature difference from the comfort level, taken to be 20 degrees Celsius,

according to the time of day, which consumption activities generally follow. Using this method,

their annual GAMM achieved an R2 of 0.89, and provided an interpretable set of smooth

terms to demonstrate demand patterns. Unfortunately, other forecasting error metrics were not

reported. Further specification details of their GAMM model can be found in later chapters of

this work.

The STLF domain poses a unique challenge in comparing past research outputs. Likely

due to the wide variance in data availability and contextual application, creating or adhering

to standard processes poses many issues. Choosing how much data is reasonable to use for

model training or testing, appropriate methods for cross-validation of model hyperparameters,

and other questions which have more definitive answers in other fields, do not present as such
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in STLF. These issues and others contribute to inefficient research outputs which do not pro-

vide as much value to the actual businesses and organisations which require load forecasts.

Hong and Fan [11] note such difficulties, proposing misaligned incentives between novelty of

academic research and usefulness to industry as one contributing factor. More concretely, the

authors survey STLF methods with a novel framing: similar day methods (e.g. k-nearest neigh-

bours techniques), variable selection techniques, hierarchical forecasting (e.g. use of smart grid

micro-data), and weather station selection.



Chapter 3

Data Description

Both the demand and weather data used in this analysis were provided by TESLA Forecasting

[12]. These include the demand variables described in Table 3.1, with each listed variant of

demand being the average number of Megawatts measured or estimated during the preceding

time period. In general, the provided demand data covered 30-minute time periods from 2016

to 2021. Additional processing was required to unify all data to the same periodicity, as data

from AEMO has instead been published for 5-minute intervals since 2021. Additionally, to fill

in some missing values, supplementary demand data was sourced directly from the Australian

Energy Market Operator (AEMO) [13] via scripted download.

Label Data Type Units Description
datetime datetime YY/MM/DD HH:mm:ss Date and time of observation
total load numeric Megawatts Average total electricity demand
net load numeric Megawatts Average net electricity demand
pv est numeric Megawatts Estimated distributed PV generation

Table 3.1: Demand Data Details

The three demand variables are distinguished in more detail as follows. net load refers

to AEMO’s Market Management System TotalDemand Dispatch field, an estimate of the

total demand present across the grid, which excludes transmission losses and scheduled loads.

total load is quite similar, with the major difference being the inclusion of scheduled
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loads. On the assumption that scheduled loads need not be forecasted, we tend not to make use

of this particular variable in the ensuing work. pv est is the total generation attributed to

rooftop photovoltaic installations, estimated via satellite image analysis. To make our research

more applicable to other grids, which may not have these types of estimates available, we make

sparing use of this field.

For more detail about the definition, measurement and estimation of these terms, see the

documentation at https://aemo.com.au/.

For both the SA and NSW energy markets, 545 pv est observations were found to

be missing from 29 unique days. Along with some seemingly randomly dispersed missing

values, large windows were missing from 2 to 26 June 2022 and 19 to 21 December 2022.

Unfortunately, AEMO’s publication format for this field was not as easily parsed as other

fields, so these missing data were not supplemented.

Figure 3.1: Annual Net Load Distributions by Region

https://aemo.com.au/
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The evolution of net load distributions over the available years of data is demonstrated for

each region in Figure 3.1. In both regions, high load anomalies remain roughly consistent, but

the majority of demand has shifted slightly down and to the left over the years, widening the

distributions across the lower end. These annual shifts reflect the differential impact of changes

in consumer behaviour and BTM generation in each region.

3.1 Weather Data

Hourly weather observations were provided for South Australia, New South Wales, and the

Australian Capital Territory, from a single station in each of their most populous cities: Ade-

laide, Sydney, and Canberra, respectively. The data details are shown in Table 3.2, with the

same set of variables made available from each observation site.

Histograms of each weather variable are shown in Figures 3.2, 3.4, and 3.3, for Adelaide,

Canberra, and Sydney, respectively. radkjm2 and rainmm have their counts on the ver-

tical axis log-transformed for clarity; the majority of observations are zero, which precludes

any insight at a normal scale. Of note in these histograms are the differences between each

region’s temperature distribution, especially in the lower temperature range, likely impacting

differential demand for electricity to run heating appliances. Some surprising peaks also show

in Canberra’s humidity, cloud cover, and wind direction observations. It is assumed that these

are reflective of real observations, and in the case of wind direction, attributable to a default

Label Data Type Units Description
datetime datetime YY/MM/DD HH:mm:ss Date and time of observation
cloud8 numeric Oktas Observed cloud cover
humid numeric Percent Observed relative humidity
radkjm2 numeric Watts per Square Meter Observed solar irradiation
rainmm numeric Millimeters Observed accumulative rainfall
tempc numeric Celsius Observed temperature
wdir numeric Degrees from True North Observed wind direction
windk numeric Knots Observed wind speed

Table 3.2: Weather Data Details
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Figure 3.2: Adelaide Weather Histograms
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Figure 3.3: Sydney Weather Histograms
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Figure 3.4: Canberra Weather Histograms
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value of zero when there is no wind.

As mentioned previously, some demand observations were missing in the original dataset,

but were easily retrieved from the AEMO website and slotted into their place. Some weather

observations were also missing, but not so easily dealt with.

For all weather collection sites, all observations were missing from a series of 5 obser-

vations from 10am to 2pm Australian Central Standard Time (UTC+9:30), inclusive, on 9

September 2018. This suggests a malfunction of the data collection process during that win-

dow, though without a significant expected impact on our modelling, due to the narrow window

of affected time. A similar situation arose with NSW weather observations in late March 2023,

but as the SA data was not provided beyond early March of the same year, this did not pose an

issue in our comparison.

In the weather data from Adelaide, cloud8 and rainmm had 12 and 18 respective

additional missing observations dispersed throughout the dataset, seemingly at random. In the

weather data from Canberra, additional windows of rainmm were missing, though with only

30 additional observations missing, this was not to a significant degree. In the weather data

from Sydney, in addition to the aforementioned September 2018 window, a significant window

of weather observations were missing from most of March 2018. Interestingly, the radkjm2

observations were not missing from this March window, but all other weather variables were.

This window lies quite close to the start of the available data, so its exclusion would not have a

major impact on our results. There was also a concerning proportion of cloud8 observations

missing from the Sydney data, but these were found to be mostly missing at random, and

limited to observations before mid-2022.

Heatmaps of pairwise Pearson correlation coefficients between weather observations and

their appropriate NEM region’s net load (in the bottom row) are provided in Figure 3.5. Of

note is the significant negative correlation between observed solar irradiation in Adelaide and

aggregate net load for all of South Australia. This strongly indicates the scale of impact of

BTM solar generation systems on net demand, confirming South Australia’s unique position

relative to other grids.
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Figure 3.5: Pearson Correlations by Weather Observation Site

3.2 Pre-Processing

A unified datetime variable contains significant hidden information, and requires pre-

processing to be suitable for multivariate modelling techniques. The year, month, day, hour,

and minute (in appropriate cases) were extracted as separate variables for each model, and the

original datetime was excluded. Additionally, numeric day-of-the-week, day-of-the-year,

and week-of-the-year variables were extracted to reflect the cyclical and seasonal nature of

electricity demand.

Holidays can play a major role in predictable demand anomalies. Without this additional

information about societal context, the demand on weekday-holidays especially is overesti-

mated. Therefore, a holiday dataset [14] was retrieved for inclusion in model inputs. The

format of this data is quite simple: a date, name, description, and set of relevant jurisdictions

(states/regions) to which each holiday applies (e.g. a state anniversary is only relevant to that

particular state).

Many researchers, including those at AEMO, choose to categorise days into working days

and non-working days, where non-working days include both weekends and holidays [7]. We

chose to explore different strategies for encoding this information, with the methods and results
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outlined in the relevant sections.

Merging the hourly weather data with half-hourly demand data required aggregating the

demand into hourly averages. This resulted in a complete 1-hour interval dataset from March

2018 to March 2023, which was utilised in the following work.
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Data Analysis

It can be useful to demonstrate the expected pattern of cyclical time-series via profiling: aver-

aging appropriate subsets of data across the variable of interest. The average daily net demand

pattern across weekdays is one example, shown in Figure 4.1. In both regions, demand peaks

during the morning and evening. In NSW, the daylight hours between these peaks shows a

slight dip, with night/early-morning hours showing a more drastic dip. In SA, the magnitudes

of these dips are reversed: the lowest demand on average occurs around mid-day. A clear re-

duction in demand can be seen through the weekend, most drastic from the morning through

the early afternoon.

Recalculating this daily profile across each year available in the dataset, the year-over-

year reduction in daytime net demand can be seen in Figure 4.2. This daytime reduction is

accompanied by a tight similarity through the nighttime, suggesting a major change in daytime

demand, but an unchanged base load. This daytime demand change is reflected at a similar

absolute scale (sheer number of Megawatts) across both regions. Proportionally, however, the

change in South Australia is much more significant than that in New South Wales, where base

load is much greater.

Some care should be taken in the interpretation of SA’s 2023 profile, as the data for that

year and region spans only from January to early March.

A moving average of net load in each region is presented in Figure 4.3, with the average

23
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Figure 4.1: Daily Net Demand Profiles by Region and Weekday

Figure 4.2: Daily Net Demand Profiles by Region and Year
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Figure 4.3: Net Load - 365 Day Moving Average by Region

covering the previous 365 days at each time point. A clear downward trend is indicated in both

regions from the start of the dataset until 2022, after which there is a slight upward trend. The

downward trend likely reflects increased contribution of BTM solar systems, but could also

indicate consumer behaviour changes due to pandemic lockdown policies.

Figure 4.4 presents another moving average, this one covering the previous 30 days at each

time point. At this level of granularity, seasonal trends can be seen more clearly. Of note are

the differential changes in winter and summer demand over the years. The highest peaks of

latter years show higher and smoother demand through each winter, while lower and rougher

peaks reflect the more significant, but more variant contribution of BTM PV generation through

the summer. In contrast, earlier years demonstrate winter and summer peaks which are more

comparable in magnitude.

The non-linear relationship between temperature and net load targeted by McCulloch and

Ignatieva [10] is demonstrated in Figure 4.5. Of note are the regional differences, with SA

demonstrating a more consistent horizontal cluster at low temperatures that is not present in

NSW. Two potential explanations for this cluster are differential usage of heating appliances
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Figure 4.4: Net Load - 30 Day Moving Average by Region

Figure 4.5: Temperature vs Net Load by Region
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Figure 4.6: Irradiance vs Net Load by Region

or a higher proportion of days which are both sunny and cool. Sharp-eyed readers may notice

vertical artifacts, especially in the SA plot; we assume these reflect temperature measurements

which were rounded to the nearest whole number, for unknown reasons.

The negative linear relationship between solar irradiance and net load is shown in Figure

4.6. Interestingly, the shape of each net load distribution along the irradiance axis is fairly

constant, with the majority of observations clustered toward the lower end, and a fat tail of

higher net loads. Even so, there is some dispersal of net load as irradiance increases, especially

in NSW, indicating less straightforward load prediction in those high-irradiance instances.

Under certain conditions in SA, the contribution of BTM PV systems has been so signifi-

cant as to cause a negative total load (and near-negative net load). At these two points around

midday on 21 and 27 November 2021, more electricity was added to the grid by consumers

and scheduled loads than was demanded. By our analysis, this occurred under a combination

of rare conditions. The base load (calculated as minimum nighttime load, typically around 2-

3am) was in the 2nd percentile of nighttime loads, meaning these two days had particularly low

demand even through the night, without any solar contribution. Likewise, the solar irradiation
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at the time of negative load ( radkjm2 3,500 Watts per Square Meter) was in the 4th per-

centile of midday (10am to 3pm) solar irradiation observations. So, these anomalies occurred

by a combination of high levels of sunlight and uncharacteristically low demand. Without any

known holiday effects, it’s unclear what may have caused the low base load, though general

public concern at the time about a new strain of pandemic disease is a strong candidate [15].



Chapter 5

Methodology

5.1 Process Considerations

As previously discussed, foundational methodological processes are not very tightly standard-

ised in STLF. For example, McCulloch and Ignatieva [10] report an improved model fit when

reducing the training set size from one year to one month of observations. It is not clear that

this kind of improvement will necessarily extend to new data, or to other modelling meth-

ods. Therefore, there is some specific uncertainty around the optimal time window for model

training.

The following analyses utilise both sliding-window and expanding-window training strate-

gies, as illustrated in Figure 5.1 and 5.2, respectively. The sliding-window strategy involves

fixing the training window size, for example a complete year of observations, and sliding the

window along the time axis of the available data. Performance metrics averaged over each

model trained in this way should reflect the comparative suitability of the chosen window size.

The expanding-window strategy, in contrast, involves fixing the first observation to be included

in all training sets, and progressively expanding the size of the training set to include ever

more data. Aggregate performance metrics from these models should reflect the comparative

suitability of incorporating additional data beyond the minimum window size.

Given these training strategies, the optimal testing strategy is slightly more obvious, but

29
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Figure 5.1: Sliding Window Strategy. Reprinted from Yang [16]

Figure 5.2: Expanding Window Strategy. Reprinted from Yang [16]

not completely so. In general, test predictions should be computed for some number of obser-

vations which directly follow the end of the training set, as they would be in actual application.

Those predictions from the ensuing 24-48 hours are most relevant in the short-term forecasting

domain, but, depending on the training strategy, a test window of that size makes very ineffi-

cient use of each model. To thoroughly utilise our complete 2018-2023 dataset at this level of

granularity, up to 1000 models would be necessary to obtain independent predictions for each
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24-48 hour period. On the other hand, forecasting based on weather observations, rather than

weather forecasts, makes the use of longer test windows more tractable. While this can inflate

accuracy metrics from research, relative to real operational demand forecasting, it is neces-

sary to maintain a focused scope of research. We chose a test window of 7 days as a suitable

trade-off. These and other trade-offs between accuracy, granularity, thorough use of data, and

computation time are explored in later sections.

5.2 Baseline Model Replication

There are several ways to approach the STLF modelling task, the most parsimonious of which

is as a univariate time series. By utilising this well-established strategy, we can assume a

strong theoretical foundation while minimising the number of parameters in the model, and

simplify interpretation of results. A Generalised Additive Mixed Model (GAMM) meets these

requirements by fitting smooth functions to each predictor and predicting the sum of those

functions’ outputs for a given data point. The particular strength of this method, in comparison

to other univariate time series methods, is its ability to fit mixed types of smooth curves to each

covariate. This enables highly non-linear trends to be closely fit by the model.

Our GAMM baseline model adhered as closely as possible to that of McCulloch and Ig-

natieva [10]. Consumer activity was modelled there in a novel way: by weighting the difference

between observed temperature and comfortable temperature by time of day. This is driven by

the intuition that consumer demand is strongly dependent on time of day, and that tempera-

ture’s impact on that demand is not linear, but one attenuated by hours of activity. For example,

very low temperatures at 4am do not affect demand as much as low temperatures at 8am, when

consumers are far more likely to demand electricity via heating appliances.

The implementation of this weighting strategy required normalising DST time into a [0, 1)

range, such that the first observation of the day accorded to 0, and the last observation just less

than 1. This time-of-day encoding is input to a piecewise continuous sinusoidal function, which

returns a value between 0 and 1, with 1 representing the full temperature signal, and 0 none.

This weight is multiplied by the temperature difference from the comfort level of 20 degrees,

resulting in a weighted temperature value which as a series can be smoothed and included in
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Figure 5.3: Temperature Weighting Illustration

the model. This weighting process is illustrated for several ideal constant-temperature days in

Figure 5.3. As can be seen, all temperatures are down-weighted toward the comfort level in

the early morning, when demand sensitivity is lowest. Dynamic attenuation follows, according

to observed demand patterns, and the true unweighted temperature is returned for the evening

peak, when demand for heating and cooling appliances is most sensitive.

McCulloch and Ignatieva [10]’s model was fit to weekdays in New South Wales (NSW)

from March 2014 to March 2015, using Year, DST time, and time-weighted temperature. The

Year and DST time data were [0-1) normalised, such that the first observation of the Year

or day accorded to 0, and the last observation just less than 1. DST time was modeled as a

cyclic cubic spline, a type of polynomial smoothing which ensures that the end point matches

up with the start point (e.g. y1 = y2 when x1 = 0, x2 = 1). This spline type specification
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should result in a better match to the true average daily cycle by ensuring continuity between

days. The other terms were modeled as thin plate splines, which are particularly effective in

capturing non-linear relationships between variables. In the context of spline modelling, knots

are specific points in the range of a predictor variable where the curve transitions from one

polynomial segment to another. The choice of the number and placement of knots affects the

shape and flexibility of the resulting curve. The authors found that the optimal number of knots

for DST time, DST time-weighted temperature, and Year were 12, 8, and 7, respectively.

The performance and suitability of this modelling technique may have been affected by

changes in the data over the years. As a continuous dataset from 2014 to 2023 would be

ideal for testing this hypothesis, further data was sourced from AEMO [13] and the weather

modelling service provided by Open-Meteo [17]. This weather data is not expected to be as

accurate as the weather observations in the dataset provided by TESLA Forecasting, but suits

this comparative purpose well enough. This temporary dataset is only used in this section.

The training strategy here is that of an annual sliding window. Each R2 fitness metric is

computed for weekdays within a 365 day window, where the start of that window is advanced

by some number of observations (roughly 5-6 months), such that 20 annual windows in total

span the complete 2014-2023 temporary dataset.

The parsimonious GAMM model was fit using R Statistical Software (v4.3.1) [18] and

the mgcv package [19] with the specification detailed above, and labelled gamm . In order

to explore the trade-off of accuracy for parsimony in the original model, two variants of this

model were also fit in tandem. A minimally modified version gamm.rad , which simply

added direct normal irradiance as a thin plate spline term, and a maximally modified ver-

sion gamm.all , which added all available weather variables as thin plate spline terms. All

of these model specifications are provided in detail in the Appendix, and in our public code

repository1.

Comparison of how these three GAMM variants fit the data over the years should give some

idea of their robustness as forecasting models. As is shown in Figure 5.4, the parsimonious

GAMM has not proven very robust to changes over the years. While the maximally modified

1https://github.com/chaserobertson/tesla-stlf

https://github.com/chaserobertson/tesla-stlf
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Figure 5.4: GAMM R2, NSW 2014-2023

Figure 5.5: GAMM R2, SA 2014-2023

variant achieves the closest fit across all years, the minimally modified variant keeps close

pace. This close relationships suggests that the addition of direct normal irradiance maintains

parsimony while providing most of the information necessary for a close fit.

When applied to SA demand data, the GAMM models in general do not perform quite

as well as in NSW, as shown in Figure 5.5. It is likely that the highly customised piecewise

sinusoidal weighting function used by the original authors for temperature weighting is not

well suited for extension to new regions. Even so, the fitness trend of each model illustrates the

information gain from irradiance and other weather variables. Again, the minimally modified
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variant trends well over the years while maintaining comparable parsimony to the original

unmodified GAMM.

5.3 Beyond Baseline

Though the GAMM technique does not seem to model extremely accurately in this new con-

text, it maintains its appeal of precedence and interpretability. It is plausible that prediction

performance could be improved by fitting a more flexible non-linear model, like Random For-

est, to a GAMM’s residuals. A Random Forest (RF) model is a Bagging ensemble method that

uses independent subsets of the training data to fit a large number of decision trees, with each

tree utilising only a small independent subset of the available predictor variables. Prediction is

computed as an average of the predicted value from each tree. This approach is well-researched

and in general robust to missing values, complex and noisy data with outliers, and overfitting.

An additional advantage is independent parallel computation of each tree, and the provision of

variable importance estimates based on each variable’s influence in the relevant trees.

To explore the potential benefits of residual modelling in more detail, the same three

GAMM variants from the previous section are fit, along with three new RF variants. One

RF is a completely independent model from the others, as would traditionally be done to com-

pare between separate methodologies. The other two RF variants, which could be considered

simple applications of the boosting technique, are fit on the residuals of one of the two minimal

GAMM variants. These two RFs utilise all available covariates to predict the residuals of their

source GAMM, for which the available covariates are limited. Again, the model specifications

are provided in detail in the Appendix and in our public code repository2. The data used here is

not the same as that used in the previous section, which was only temporarily useful, but again

the primary dataset which has been described in great detail.

To unify this attempt at modelling the residuals of the baseline GAMM model, the training

regime matches that of the previous section, where 20 year-long windows were used to train

each model variant. However, this case differs in performance measurement strategy. Here

2https://github.com/chaserobertson/tesla-stlf

https://github.com/chaserobertson/tesla-stlf
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standard prediction metrics (MAE, MAPE, and RMSE) are computed for predictions within

the week of observations immediately following the training set.

The Random Forest models were fitted as described in R with the randomForest pack-

age [20], using all available weather variables, plus 0-6 encoded weekday identifiers. Though

Random Forests tend to be robust to hyperparameter settings, variants of the size of terminal

nodes were attempted, with results not varying significantly. Individual results from the South

Australia data using default RF hyperparameters are presented in Figure 5.6. Of minor note

are the universal spikes in error just before 2019 and 2020. These indicate particularly dif-

ficult forecasting periods during December of 2020 and 2021 (the associated test periods for

those models). Given the abnormal pandemic-related social conditions around those times,

unpredictable demand is not too surprising. The error spikes in latter years, in contrast, more

informatively reflect the differences between models. The parsimonious GAMM does not make

use of irradiance, so is unable to predict accurately through the summer. While the RF fit to its

residuals does make use of irradiance, and is thus able to predict more accurately, it is not quite

as accurate as the other variants. The RF model fit directly to the data performs consistently

better than the others.

Model MAE MAPE (%) RMSE
gamm 141.75 13.36 179.76

gamm.all 115.10 10.30 147.97
gamm.rad 113.97 10.10 149.33

rf.res.gamm 113.55 10.08 147.24
rf.res.gamm.rad 103.83 09.26 137.41

rf 94.03 08.62 129.33

Table 5.1: Residual Modelling Aggregate Metrics, SA 2018-2023

For each of the models shown in Figure 5.6, aggregate results are shown in Table 5.1. The

addition of irradiance improves GAMM performance significantly, and fitting an RF model to

the residuals makes some minor improvement as well. Interestingly, the simple RF fit directly

to the demand data makes the most accurate predictions, across all three metrics.

Given the relative success of the Random Forest model, RF and its related ensemble meth-

ods were considered for improved modelling accuracy moving forward. For convenience of
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Figure 5.6: Residual Modelling Metrics, SA 2018-2023
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application of a wide variety of modelling methods, the scikit-learn package for Python

was utilised [21] for the ensuing analysis. This package provides an extensive library of model

implementations and utility functions, all adhering to a standardised Application Programming

Interface (API) which greatly simplifies modelling and model comparison.

One of the methods related to Random Forest is Histogram Gradient Boosting (HGB): an

advanced ensemble method that refines traditional Gradient Boosting by employing histogram-

based binning techniques. It transforms each individual feature space into a discrete space, then

during tree construction, these discrete spaces are used to select tree splits more efficiently, re-

ducing computational costs. It maintains the boosting architecture of sequential weak learners,

while achieving competitive predictive accuracy and robustness to outliers and missing values.

In our analysis of ensemble techniques available through the scikit-learn package, in-

cluding Random Forest, traditional Gradient Boosting, and Ada-Boost, HGB struck the best

balance between accuracy and training time. HGB models are used in the ensuing experiments

to leverage its training efficiency and facilitate more dimensions of experimentation.

5.3.1 Holiday Encoding

To explore any interaction between holiday encoding and training window strategy, the fol-

lowing encoding variants were used. First, the naive encoding: no holiday information at all.

Second, a simple binary encoding, where observations occurring during a holiday are tagged

with 1, and all other observations 0. Third, a categorical encoding, where observations are

tagged with an integer representing each unique holiday, with 0 representing no holiday. It is

worth noting that around 3% of all observations occurred during a holiday, which gives some

idea of the potential impact this new information could have. Finally, a binary encoding of

working days was included, where 1 is the default, and 0 is assigned to observations occurring

during a weekend or holiday.

Each of the holiday encoding variants was used for the SA data with both the sliding and

expanding window strategies. Both window strategies started at the first observation in March

2018 with a minimum training window of 365 days and a test window of 7 days. Successive

windows were 30 days apart, for a total of 49 windows yielded by each strategy. To reiterate,



5.3. BEYOND BASELINE 39

Window Holiday MAE MAPE (%) RMSE
Strategy Encoding Overall Holiday Overall Holiday Overall Holiday

Expanding Binary 93.78 85.17 8.46 11.02 134.30 117.17
Expanding Categorical 93.70 88.82 8.46 11.35 134.56 120.77
Expanding None 93.33 146.20 8.44 17.31 133.24 190.02
Expanding Working Day 92.25 91.82 8.27 11.50 131.92 123.37

Sliding Binary 98.84 95.64 9.08 11.98 141.39 131.29
Sliding Categorical 99.19 98.78 9.13 12.16 141.94 132.85
Sliding None 97.94 146.64 8.97 17.67 140.43 192.45
Sliding Working Day 98.20 98.06 8.99 12.71 141.30 136.27

Table 5.2: Histogram Gradient Boosting Window Strategy Metrics, SA 2018-2023

the only difference between windows yielded by the two strategies was each training window’s

start point, which remained fixed for the expanding window strategy, but moved ahead by 30

days for each sliding window.

For each window of each strategy, the same sub-sample of data was used to train and test a

distinct HGB model for each holiday variant, yielding the aggregate metrics presented in Table

5.2. Separate metrics are reported for test observations occurring during a holiday, to clarify

each strategy’s effect on its goal.

While the differences in performance are not massive, they do provide some new informa-

tion about each strategy and encoding. As expected, leaving out any holiday information from

the models leads to the worst predictive performance on holidays. Perhaps less expected are

the slightly lower figures reported by the expanding window models. This suggests that more

training data does provide helpful additional information about holiday demand patterns, even

if holiday demand patterns are quite different from year to year.

In addition to the previous analysis, a supplemented window training strategy was at-

tempted. The intuition behind this particular strategy is this: there are very few holidays

present throughout the year, so a standard 365-day training window would not have enough

holiday observations to inform a model well. If holidays from before the general training win-

dow are included, supplementing the general window, holiday prediction may improve. The

supplemented window starts with a fixed annual window, but is supplemented with data from

all holidays from past years. For example, all observations which occurred during 2022 might



40 CHAPTER 5. METHODOLOGY

be included in a training set, along with each individual holiday from 2018 through 2021. We

found that this strategy actually slightly degraded prediction accuracy. It is assumed that the

additional information provided by the supplementation was not helpful due to the variance

of holiday profiles, sensitivity to exogenous conditions, and other year-over-year changes. It

could also be the case that the models did not incorporate the supplemental information in a

balanced fashion, due to their discontinuous nature.

The expanding window strategy provides comparative insight, but cannot directly inform

the optimal training set size for any individual prediction task. Leveraging the insight that more

than a year of training data may lead to superior prediction, a similar analysis was conducted

into sliding window sizes. Four sizes were attempted: semiannual, annual, biannual, and tri-

annual, covering 182, 365, 720, and 1085 days, respectively. Across each of these sizes, the

aforementioned holiday encodings were used to train distinct models and predict the ensuing

7 days as a test set. The error distributions are presented in Figure 5.7, with a row for each

metric, column for each prediction category (non-holiday/holiday prediction), an adjacency

group for each holiday encoding, and an individual boxen plot for each window size. As this is

quite a crowded comparative analysis with many dimensions, plot artifacts deemed not strictly

necessary have been removed.

While there are no statistically significant differences between any of these combinations,

predictions made from semiannual training window models are clearly the worst performers.

Biannual windows generally predict holidays best, though annual and triannual windows seem

competitive.

Given these results, an annual sliding window strategy with binary holiday encoding is

taken to be a simple, yet effective option. The ensuing analysis makes use of this methodolog-

ical decision.

5.3.2 Prediction Error Analysis

Having explored modelling techniques, holiday encoding options and the general methodolog-

ical space somewhat, the question remains as to why prediction performance is still relatively

poor, compared to results from other research. In Figure 5.8, the standard quartiles of prediction
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Figure 5.7: Histogram Gradient Boosting Window Size Metrics, SA 2018-2023
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Figure 5.8: Histogram Gradient Boosting - Metric Quartiles Over Time

residuals, absolute percentage error, and squared error are presented; the resulting distributions

give some hints in this regard.

A look at the residual quartile plot shows that the majority of predictions are quite near to

their true value, but many extreme errors are present as well, especially through the summer

months around each new year. The extreme values in this section of the plot also indicate a

slight bias toward under-prediction (where residuals have a positive value), sometimes under-

predicting by as much as 1000 MW.

The squared error plot quite strongly emphasises the greater difficulty of prediction through

the summer. Significant but inconsistent jumps occur around each new year as one traces the

maximum squared error line. While some years do present this jump around the New Year

holiday period, this pattern is not universal, or at least not well captured at the granularity of
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these sliding window models.

The absolute percentage error plot demonstrates quite an interesting pattern. Summertime

peaks are shown, but to a relatively low extent in earlier years, with much higher peaks in

recent years. The worst predictions can be so far off that they’re more than double the true load!

Cross-referencing between each plot, it can be seen that the greatest-magnitude residual from

the highest-MAPE model (marked with the dashed vertical line) was around -500 MW: horrible

prediction in relative (MAPE) terms, but not out of place in absolute (residual) terms. In

addition, the predictions from that particular model are quite unremarkable in terms of squared

error.

These metric disagreements highlight the difficulty inherent in measuring error in this do-

main. While MAPE is quite useful for comparing between different models, methodologies,

and regions, it seems not to be as useful in certain applications, especially in regions like South

Australia where demand can drop as low as 0 MW. When true load is near zero, even the small-

est prediction error will demonstrate a ghastly, potentially infinite MAPE, as true load is in the

denominator of that percentage error calculation.

To facilitate deeper insight into error patterns, the test days with highest daily sum of pre-

diction squared error are presented in Figure 5.9, with some additional variables. True load,

HGB prediction, AEMO’s PV generation estimate, and observed solar irradiance are shown,

labelled as net load , predicted , pv est , and radkjm2 , respectively. The days

are presented in decreasing order, meaning the greatest daily sum of squared errors was on

31 January 2020 (the top left plot), so this was the day where our methodology demonstrated

its worst absolute predictive accuracy. It is not surprising that the observed irradiance appears

rather jagged on this particular day, in contrast to more ideally sunny days, like 21 January 2023

at the bottom-center. What is surprising is that even with this low irradiance, the HGB model

prediction is lower than the true demand, suggesting a lack of weight given to irradiance in the

model. If irradiance were properly weighted, low irradiance should lead to higher demand pre-

diction. This defect is fairly consistent across the other pictured days as well; low-irradiance

days tend to be under-predicted, and high-irradiance days tend to be over-predicted.

Figure 5.10 provides more definitive evidence of the HGB models’ lack of weight allocated
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Figure 5.9: Histogram Gradient Boosting - Worst Prediction Days

to solar irradiance. This plot shows a point for each observation’s irradiance value against its

prediction residual, with a fitted trend line in red. The non-zero trend indicates a poor fit; as

irradiance increases, the HGB models predictably underestimate the impact, i.e. overestimate

the electricity demand.

5.3.3 Model Tuning

While fairly robust by default, a non-linear ensemble model like HGB can be somewhat sen-

sitive to hyperparameter settings, so a few options were explored as outlined in Table 5.3.

All performance metrics, including R2, are from same-subsamples test sets. In addition, the

pv est covariate was included in each model of this exploration, to more closely simulate

an applied forecasting situation in South Australia.
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Figure 5.10: Histogram Gradient Boosting - Irradiance Vs Residuals

Various hyperparameters are available for tuning, but we limited our search to the maxi-

mum number of iterations, maximum number of leaf nodes, learning rate, and L2 regularisation

parameters. The maximum number of iterations specifies the maximum number of trees to be

fit, one tree per iteration, with a default of 100. The maximum number of leaves, defaulting to

31, restricts the number of terminal nodes in each individual tree. Learning rate, also known

as shrinkage, and with a default of 0.1, is used as a multiplicative factor for the values in leaf

nodes. Finally, L2 regularization, also known as Ridge penalty, penalises model complexity

via a sum of squares measure. More details about these and other available settings can be

found in the scikit-learn documentation [21].

Our search of the hyperparameter space was randomised, such that ten independent sets of

hyperparameter settings were selected at random from the search space. We defined the search
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space as follows: for the maximum number of iterations, either 100, 500, 1000, or 2000 was

used. For the maximum number of leaf nodes, either 2, 5, 10, 20, 50, or 100 was used. For

both learning rate and L2 regularisation parameters, a log-normal distribution with mean of

0.01 and variance of 1 was used.

These results indicate that while the default HGB model is sufficiently accurate, some

increase in complexity via the number of trees or number of leaves can slightly improve per-

formance.

Iterations Leaves Rate L2 Reg. MAE MAPE RMSE R2

2000 10 0.03 0.07 64.73 5.77 83.84 0.91
500 10 0.07 0.12 65.34 5.81 84.11 0.91
2000 20 0.27 0.13 68.08 6.05 90.14 0.9
100 5 0.47 0.06 74.89 6.48 96.79 0.88
2000 100 0.4 0.91 72.17 6.56 94.67 0.89
100 50 0.61 0.08 80.03 7.09 106.63 0.86
2000 10 0.78 0.02 85.23 7.6 111.31 0.85
2000 2 0.38 0.06 101.96 8.47 126.88 0.79
500 2 0.05 0.2 116.55 10.37 144.35 0.74
100 5 0.02 0.36 155.16 15.36 197.43 0.56

Table 5.3: Histogram Gradient Boosting Hyperparameter Search, SA 2018-2023
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Discussion

Behind-the-meter electricity generation has begun to impact grids around the world with the

growth of photovoltaic and other systems. In New South Wales, this impact has been signif-

icant, but still represents a relatively small proportion of the overall electricity demand. In

South Australia, BTM generation accounts for a large proportion of overall generation, which

in combination with the smaller population and resulting variant demand, makes for more dif-

ficult forecasting. While much research has been conducted into the STLF task, less has been

done in contexts where BTM PV is so prominent.

In our analysis of the SA data, we confirm a significant correlation between demand and

irradiance, and more significant year-over-year changes in average demand profiles. Even so,

we show with moving averages that both NSW and SA demonstrate similar downward trends,

with increasing amplitude of seasonality.

Our application of the parsimonious GAMM published by McCulloch and Ignatieva [10]

yielded mixed results. In its original form, with only time-based variables and time-weighted

temperature as terms, its fitness to new data as measured by R2 has lowered or remained low,

in NSW and SA respectively. However, we found significant benefit from the addition of

smoothed irradiance, and to a lesser extent the addition of other weather variables, e.g. rainfall,

humidity, etc. In order to estimate these changes in performance since the original publication

in a contiguous fashion, we utilised additional weather and demand data from Open-Meteo

47
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[17] and AEMO [13].

Returning to our main dataset, we repeated our GAMM variant comparison, with the addi-

tion of Random Forest models trained either to the residuals of a GAMM variant, or to the data

directly. By this analysis, we found that the summers of 2020 and 2021 were unpredictable

for all models, but the summers of 2022 and 2023 were far more accurately predicted by the

models which utilised irradiance information. In addition, we found that modelling the resid-

uals of each GAMM with a Random Forest did not add significant benefit, but that fitting an

RF model directly to the data yielded the best results. Based on this and a quick exploration

of other ensemble methods, we chose Histogram Gradient Boosting as a suitable model for the

rest of our work.

Some exploration into the interaction of data windowing strategies and holiday encoding

options was also conducted. By cross-validated grid search of each strategy/encoding com-

bination, we found that the addition of holiday information in any form was useful, but only

in terms of holiday prediction itself. Overall prediction accuracy remained unaffected, due to

the low proportion of holidays throughout any given year. Based on this analysis, we chose to

move forward with the most simple but still effective combination: an annual sliding window

strategy and binary holiday encoding.

Digging deeper into the prediction errors from the HGB models, we found significant de-

pendence on the specific time period being predicted. This was especially pronounced through

more recent summers, though absolute and relative error metrics tend to disagree on which

predictions are most erroneous. While not unexpected, this variance over time does emphasise

the necessity of proper methodologies when working in the STLF domain. Robust results from

methods-based research require very careful consideration of the intended scope.

By analysing the 9 days least accurately predicted (in terms of squared error) by our HGB

methodology, we found that irradiance seemed not to be allocated sufficient importance in

prediction. Under-prediction on less sunny days and over-prediction on perfectly sunny days

were fairly consistent among those days. This pattern of under-weighting was also shown in

the relationship between irradiance and prediction residuals.

In our exploration of the HGB hyperparameter space, we found minor improvement by
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increasing the flexibility of each model. Increasing the number of iterations and lowering the

learning rate seemed to add the most benefit. Our final methodology reported cross-validated

accuracies of 65 MAE, 6% MAPE, and 84 RMSE.

In conclusion, we are confident that TESLA Forecasting and other researchers will find

our thorough analysis of the Australian demand and weather data helpful. We have shown that

GAMM models, though appealing in their statistical foundation and parsimony, are not the

most accurate predictors of demand. While ensemble methods like HGB and RF have their

weaknesses, they are shown to predict more accurately given the same information. Our treat-

ment of process considerations and inspection of prediction residuals make clear the problems

which remain for STLF forecasting in solar-rich regions like South Australia.
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Chapter 7

Future Work

As Hong and Fan [11] touch on in their meta-analysis, the impact of our work will likely be

attenuated by a latent dichotomy in the STLF field. Due to the significant differences between

grid contexts and regional demand patterns, valuable work can be conducted with a specific

regional focus and limited scope. This work, best executed in tandem with grid operators or

other stakeholders in the field, enables customised modelling which can be implemented and

translated into live systems which provide applied value. On the other hand, more general

academic work focusing on methodologies and modelling methods can provide a different

class of value: foundational, if not immediately executable in a specific domain. Straddling

these avenues to impact, as much past research has done, limits both the potential for applied

impact and foundational information. Future research can potentially be made more valuable

by focusing on one of these two avenues of impact: applied and partnership-based; or academic

and foundational.

Future research in a distributed BTM generation context could potentially benefit greatly

from additional exogenous information. Adding the most informative weather observations.

e.g. irradiance, from several different sites across the grid region may improve forecasting ac-

curacy significantly. With greater observational coverage of the geographical area from which

solar power is harvested, forecasting models could be better able to predict the effects on net

demand.

51
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Explicit physical modelling of solar irradiation, e.g. by a combination of azimuth and

number of panel installations in the region, is another potential avenue for impact. By doing

so, true demand and BTM generation could plausibly be separated, simplifying the forecasting

task.

More complex hybrid modelling techniques could also facilitate improved forecasting in

future work. For researchers willing to pay the necessary computational costs, sequence-to-

sequence or attention-based neural networks are promising avenues to explore in solar-rich

grid contexts.
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Appendix A

GAMM Specifications

gamlwmod <- Demand ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp")

rad.form <- Demand ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp") +
s(direct_normal_irradiance..W.m.., bs="tp")

all.form <- Demand ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp") +
s(direct_normal_irradiance..W.m.., bs="tp") +
s(diffuse_radiation..W.m.., bs="tp") +
s(shortwave_radiation..W.m.., bs="tp") +
s(windspeed_10m..km.h., bs="tp") +
s(winddirection_10m...., bs="tp") +
s(rain..mm., bs="tp") +
s(cloudcover...., bs="tp") +
s(relativehumidity_2m...., bs="tp")

fit.gamm <- function(start, form) {
train <- subset(fitdata[start:(start + 365*24),], wday %in% 1:5)
wtdyear <- mgcv::gamm(form, data = train)
summary(wtdyear$gam)$r.sq

}
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Appendix B

Models

gamlwmod <- net_load ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp")

rad.form <- net_load ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp") +
s(radkjm2)

all.form <- net_load ˜ s(DSTTime, bs = "cc") +
s(WtdTemp, bs = "tp") +
s(Year, bs = "tp") +
s(radkjm2) +
cloud8 + # not suitable for smoothing
s(windk) +
s(wdir) +
s(humid) +
s(rainmm)

gam.forms <- c(gamm=gamlwmod, gamm.rad=rad.form, gamm.all=all.form)

rf.form <- net_load ˜ DSTTime + WtdTemp + Year + radkjm2 + tempc +
humid + cloud8 + rainmm + windk + wdir + wday

res.form <- residual ˜ radkjm2 + tempc + humid + cloud8 + rainmm +
windk + wdir + wday
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# Sliding window methodology for one annual window with 1-week testing
fit <- function(start) {

end <- (start + 365*24)
train <- subset(fitdata[start:end,], wday %in% 1:5)
test <- subset(fitdata[(end+1):(end+24*7+1),], wday %in% 1:5)
true <- test$net_load

# Independent RF Variant
rf <- randomForest::randomForest(rf.form, data = train)
pred <- predict(rf, test)
results <- ...

# 3x GAMM Variants
for (name in names(gam.forms)) {

wtdyear <- mgcv::gamm(gam.forms[[name]], data = train)
pred <- predict(wtdyear$gam, test)
results <- ...

# Also fit Residual RF Variant if applicable
if (name != "gamm.all") {

train$residual <- train$net_load - predict(wtdyear$gam, train)
res.rf <- randomForest::randomForest(res.form, data = train)

test$residual <- true - pred
res.pred <- pred + predict(res.rf, test)

results <- ...
}

}
return(results)

}
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